
IEEE TRANSACTIONS ON HUMAN-MACHINE SYSTEMS, VOL. 44, NO. 1, FEBRUARY 2014 41

A Gesture Learning Interface for Simulated Robot
Path Shaping With a Human Teacher

Paul M. Yanik, Senior Member, IEEE, Joe Manganelli, Jessica Merino, Anthony L. Threatt, Johnell O. Brooks,
Keith Evan Green, Member, IEEE, and Ian D. Walker, Fellow, IEEE

Abstract—Recognition of human gestures is an active area of
research integral for the development of intuitive human–machine
interfaces for ubiquitous computing and assistive robotics. In par-
ticular, such systems are key to effective environmental designs
that facilitate aging in place. Typically, gesture recognition takes
the form of template matching in which the human participant
is expected to emulate a choreographed motion as prescribed by
the researchers. A corresponding robotic action is then a one-to-
one mapping of the template classification to a library of distinct
responses. In this paper, we explore a recognition scheme based
on the growing neural gas (GNG) algorithm that places no initial
constraints on the user to perform gestures in a specific way. Mo-
tion descriptors extracted from sequential skeletal depth data are
clustered by GNG and mapped directly to a robotic response that
is refined through reinforcement learning. A simple good/bad re-
ward signal is provided by the user. This paper presents results that
show that the topology-preserving quality of GNG allows general-
ization between gestured commands. Experimental results using
an automated reward are presented that compare learning results
involving single nodes versus results involving the influence of node
neighborhoods. Although separability of input data influences the
speed of learning convergence for a given neighborhood radius, it is
shown that learning progresses toward emulation of an associative
memory that maps input gesture to desired action.

Index Terms—Gesture recognition, human-robot interaction,
machine learning, robots.

I. INTRODUCTION

A S people age, they must often deal with decreased mo-
bility. Such reductions may ultimately impair one’s abil-

ity to perform essential activities of daily living (ADLs). For
those wishing to age in place, a diminished capacity to conduct
ADLs is frequently an indicator for diminished quality of life,
decreased independence, increased caregiver burden, or insti-

Manuscript received August 31, 2012; revised March 25, 2013 and August
14, 2013; accepted November 2, 2013. Date of publication December 18, 2013;
date of current version January 16, 2014. This work was supported by the U.S.
National Science Foundation under Award IIS-SHB-116075. This paper was
recommended by Associate Editor A. Howard of the former IEEE Transactions
on Systems, Man and Cybernetics, Part A: Systems and Humans (2012 Impact
Factor: 2.183).

P. M. Yanik is with the Department of Engineering and Technology, Western
Carolina University, Cullowhee, NC 28723 USA (e-mail: pyanik@wcu.edu).

J. Merino and I. D. Walker are with the Department of Electrical and Com-
puter Engineering, Clemson University, Clemson, SC 29632 USA (e-mail:
jmerino@clemson.edu; iwalker@clemson.edu).

J. Manganelli, A. L. Threatt, and K. E. Green are with the School of Archi-
tecture at Clemson University, Clemson, SC 29632 USA (e-mail: jmangan@
clemson.edu; threatt@clemson.edu; kegreen@clemson.edu).

J. O. Brooks is with the Department of Psychology, Clemson University,
Clemson, SC 29632 USA (e-mail: jobrook@clemson.edu).

Color versions of one or more of the figures in this paper are available online
at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/TSMC.2013.2291714

tutionalization [1]. With this population in mind, the authors
envision a comprehensive system of adaptive architectural and
robotic components to support independent living for individu-
als whose capabilities and needs are changing over potentially
long periods of time [2].

Heretofore, architects and environmental designers have
attempted to accommodate those with physical impairment
through the use of universal design principles (UDPs) and smart
home technologies. UDPs ensure that the environment does
not confound an individual’s efforts to complete tasks. UDPs
aim to make the environment safe, clean, legible, and barrier-
free [3]–[5] for all occupants regardless of ability. These strate-
gies facilitate resident mobility and independence. However,
the majority of current implementations are static and of low
fidelity, with accommodation solely the result of the form and
placement of furniture and fixtures.

Smart homes aim to extend awareness, increase control over
systems, and enhance the security, healthfulness, and safety
of the environment through sensing, inference, communication
technologies, decision-making algorithms, and appliance con-
trol [6]–[9]. However, the real-time processing of occupant ac-
tivity has historically been costly in terms of computing and
memory requirements and often relies on technologies consid-
ered intrusive of people’s privacy (e.g., cameras). As a result,
these efforts have focused on systems associated with the built
environment such as the design and placement of furniture and
fixtures. Practical occupant sensing in smart homes remains of
low fidelity including such ON/OFF sensor activations as room
changes, door openings/closings, appliance actuations, etc.

A logical progression for the use of high fidelity sensing may
be seen in its central importance to assistive robotics. As Green
and Walker describe [10], the notion of assistive robotics fre-
quently conjures images of a self-contained humanoid servant
in which all robotic and intelligence challenges have been ad-
dressed. Finding this to be an unlikely possibility in the near term
and seeking to move beyond the conventional static smart home,
we envision an environment containing robotic components that
take advantage of the capabilities and higher level thinking of the
user to operate in a collaborative manner; working with rather
than for the user. The authors’ past investigations into possi-
ble forms and use models for assistive robotics have considered
appliances such as a hospital over-the-bed table, continuum sur-
faces, and intelligent storage for personal items [11]–[13]. Cur-
rent efforts on the Assistive Robotic Table project under way at
Clemson University make use of high fidelity sensing to create
a nonverbal communication loop between the device and a user
in a health care setting (see Fig. 1).

2168-2291 © 2013 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications standards/publications/rights/index.html for more information.

42 IEEE TRANSACTIONS ON HUMAN-MACHINE SYSTEMS, VOL. 44, NO. 1, FEBRUARY 2014

Fig. 1. (a) Nonverbal communication loop of the Assistive Robotic Table being
developed at Clemson University. The focus of this paper is on the emergent
(learned) response of this device to the user. (b) Current project artifact.

The high fidelity sensing employed in efforts such as these
will allow for learned inference of user action and intention
through persistent monitoring. Furthermore, degradation in the
abilities of the user could be tracked over time so as to adap-
tively inform the robot’s assistive action plans. With knowledge
of typical user motion patterns, the robot could respond to ges-
tured commands or detect infrequent needs such as assistance
with reach, weight transference, or ambulation [2]. Effectively
implemented, assistive robotic components would facilitate the
aforementioned aims of smart home technologies.

Toward the realization of these components, this paper
presents research into one possible mode of human–machine
interaction: the use of arm-scale gesture as a basis for a learned
command vocabulary. Given the prevalence of gesture at this
scale as a means of human communication (see Section II), the
system presented here offers promise as an interface that is ef-
fective, extensible, and intuitive to the user. However, due to the
range of possible performance variations by the actor, the ca-
pability for such an interface to generalize across gestures with
few observations is seen as essential to its success. Addressing
this challenge is a key contribution of this paper. Furthermore,
the ability of the proposed system to learn new gestures with
no adherence to a choreographed example offers accessibility
to the unskilled or impaired user. Therefore, while basic tech-
nical challenges associated with robot path shaping could be
addressed by simpler mechanisms such as a joystick or push-
button interface, this paper focuses on the research aspects of
gesture learning that would cater to a broader user community.

This paper is structured as follows. Section II describes con-
stituent problem areas associated with gesture recognition. Re-
lated work in each area is presented along with its respective ben-
efits, drawbacks, and how it informs our approach. Section III
discusses the specifics of the system design including data
representations, algorithms, and our simulation environment.
Section IV discusses our data collection fixture, experimenta-

tion scenarios, and results. Section VI presents conclusions and
future work.

II. RELATED WORK

Human gesture may occur in various forms including hand
and arm gesticulation, pantomime, sign language, static poses
of the hand and body, or language-like gestures that may replace
words during speech. Of these, hand and arm gesticulation ac-
count for some 90% of gestured communication [14]. Hence,
the exploration of gesture at this scale as a means of command
interaction with robotics and computing is warranted. Efforts at
automated gesture recognition generally involve a common set
of considerations and problems to be addressed. These include
some combination of sensor platform, data representation, pat-
tern recognition, and machine learning. This section discusses
previous approaches to these problems relative to the methods
applied in this paper.

A. Sensing

In order for gestures to be detected and classified, the motion
or pose of the actor must be sensed. Typical sensor strategies
include wearable devices such as data gloves or body suits that
are instrumented with the magnetic field tracking devices or ac-
celerometers, or vision-based techniques involving one or more
cameras [14]. Still other approaches involve IR motion or prox-
imity sensors.

Jin et al. [15] use a glove-based orientation sensor to extract
static hand positions to be used as commands. Lementec and
Bajcsy [16] use wearable (arm) orientation sensors for sensing
arm gesture models composed of Euler angles. These are in-
tended for use in an unmanned aerial vehicle and implemented
as a lab simulation. Zhou et al. [17] use MEMS accelerome-
ter data to characterize hand motions including up, down, left,
right, tick, circle, and cross. Wearable sensors are also used
in [17]–[19], and others. Typically, however, the usefulness of
wearable devices to measure gestured motion is accompanied
by the acknowledgment that such devices may limit user motion
and often require a wired connection to a computer. Thus, they
present inherent impediments to practical application [14].

IR proximity sensors are used by Cheng et al. [20] to cre-
ate a reliable gesture recognition system for a touchless mobile
device interface. The method uses the pairwise time delay be-
tween a passing user’s hand and two IR proximity sensors. This
system detects gestures of swipe right, swipe left, push, and pull.
Dongseok et al. [21] propose a computer control interface design
using a proximity sensor to extract hand commands to a GUI.
The mechanism is scaled as a mouse replacement. Such coarse
assessment of motion is not sufficiently descriptive to support an
extensive vocabulary of gestures. However, as shown by Yanik
et al. [2], an array of IR motion sensors can provide sufficiently
rich data to allow for accurate classification of gross motions.

Much of the work in gesture recognition is performed us-
ing video image sequences due to the richness of information
and cost effectiveness available with cameras. A recent thor-
ough discussion of vision based and other sensor types for the
purpose of gesture recognition is given by [22]. Vision-based

YANIK et al.: GESTURE LEARNING INTERFACE FOR SIMULATED ROBOT PATH SHAPING WITH A HUMAN TEACHER 43

approaches may suffer from disadvantages associated with la-
tency, occlusion, or lighting. Furthermore, since most video se-
quences represent a 3-D to 2-D projection, a loss of information
is inherent in the processing of data [14]. In addition, although
the presence of cameras in an individual’s personal environment
is becoming more common, they are often considered intrusive
of privacy in certain scenarios [23], [24].

With the limitations of these various sensor types in mind,
the study reported in this paper utilizes the Microsoft Kinect
RGB-D depth sensing system [25]. The Kinect provides a rich,
real-time, 3-D data stream that preserves user anonymity and is
also functional in dark environments where conventional cam-
eras would be ineffective.

B. Data Representation

Given an input data stream, a compact data representation
must be computed. Representations may be roughly divided
into feature-based (parametric) versus holistic (nonparametric)
forms. Parametric representations extract features related to the
physical geometry and kinematics of the actor. Spatial informa-
tion is preserved.

Holistic representations utilize statistics of the motion per-
formed (typically in (x, y, t) space). Hence, with regard to the
frequently employed visual images of motion, these can also
be characterized as pixel-based representations [26]. In general,
however, the problem of data representation is one of feature
selection. Some vector to characterize numerical features is se-
lected and applied to a classifier.

Motion history images have been used to form a visual tem-
plate of motion that preserves directional information [27], [28].
Histograms of oriented gradients (HOGs) are used in [29] to
generate regional descriptors of single-frame images for human
detection. Periodic motions such as walking or running may be
recognizable solely from the movement of lighted feature points
placed on the actor’s body [30]. This phenomenon is exploited
by Benabdelkader et al. [26] and Cutler and Davis [31] through
the concept of self-similarity. In this approach, the locations of
features (e.g., edges) in an image sequence are seen to generate
a repeating pattern from which a motion descriptor may be gen-
erated. The set of features is tracked through the course of an
image sequence. The summed distances of features between im-
age pairs is computed. Performing this summation exhaustively
across all image pairs forms a self-similarity matrix (SSM).

HOGs and SSMs are combined to produce view-invariant
representations for nonperiodic motions in [2] and [32]. Results
described in these works show that recurrences in a spatial sen-
sor or video data can produce robust discriminants. Although
these representations possess strong discriminative qualities,
they tend to be of high dimension and require either compression
or excessive computation.

In this paper, we extend the concept of dynamic instants
(DIs) advanced by Rao et al. [33] to three dimensions. DIs are
described as the extrema (or discontinuities) of acceleration in
an actor’s motion. This representation has also been shown to
be view-invariant. The Kinect allows us to directly extract a
3-D rather than working with typical 2-D video. We form our

representation using the five most significant DIs in (x, y, z)
space along with their frame number over a 5-s interval at 30-Hz
sampling. This is described further in Section III.

C. Pattern Recognition

In order to classify gestures, the feature vector is typically
sorted into one of a known gallery of types. Numerous classifi-
cation methods have been introduced including hidden Markov
models (HMMs), finite-state machines (FSMs), clustering tech-
niques such as nearest neighbor (kNN) and C-means, and various
types of artificial neural networks including multilayer percep-
tron networks, time delay neural networks (TDNN) [14], neural
networks based on the adaptive resonance theory (ART) [34],
neural gas (NG) [35], and growing neural gas (GNG) [36].

HMMs have well-established success in the classification of
gestures and of generalized motion, and are used in numerous
research efforts. Notably, these include [37] and [38]. A survey
of such approaches can be found in [39]. The authors note that
HMM approaches may inaccurately assume that observation
parameters may be approximated by a mixture of Gaussian den-
sities. HMMs often have poorer discriminative outcomes than
neural networks [40], [41] and require that the state architec-
ture of the model and the lexicon of recognizable symbols be
decided beforehand [42].

Bobick and Wilson [43] use FSMs to classify gestures col-
lected from video images. Lee [44] seeks to classify video mo-
tion sequences as whole-body gestures by mapping sequences
of estimated poses to gestures. Principal component analysis is
used for visualization; an expected maximum-based Gaussian
mixture model is used to cluster poses. Frolova et al. [45] clas-
sify planar decimal digits traced in free air with high accuracy
by storing hand trajectories. The most probable longest common
subsequence algorithm is used to classify trajectories by com-
parison with a probabilistic template based on variations within
a Gaussian mixture model. Prasad and Nandi [46] explore the
effectiveness of several methods to vectorize and cluster ges-
ture motion data including: hierarchical, mean shift, k-means,
fuzzy C-means, and Gaussian mixture. Schlömer et al. [47] use
k-means to determine clusters in basic hand/arm gestures gener-
ated using a Wiimote controller including square, circle, roll, Z,
and tennis swing. Wachs et al. [48] use fuzzy C-means clustering
to achieve highly accurate recognition of 12 static hand gestures
as the basis for a telerobotic command interface. And, although
the focus of Knox’s work in [49] is user-guided machine learn-
ing (see Section II-D), the author uses kNN to determine the
probable state of a robot from sensor data in order to conduct
state-action selection as the basis for a user reward function.
The experimentation described in this paper is compared with
a kNN approach. Unlike Knox, however, we assume that the
sensed gesture is the state, rather than the sensed position of the
robot.

Zhu and Sheng [19] use wearable sensors to detect both hand
gestures and simple ADLs. Neural networks are used for gesture
spotting. HMMs are used for classification. Varkonyi-Koczy and
Tusor [50] use circular fuzzy neural networks (CFNNs) to clas-
sify static hand postures for their iSpace intelligent environment.

44 IEEE TRANSACTIONS ON HUMAN-MACHINE SYSTEMS, VOL. 44, NO. 1, FEBRUARY 2014

CFNNs are seen to have reduced training time. Sequences
of hand postures are composed into hand gestures. Yang and
Ahuja [51] use TDNNs to classify sequences of motion tra-
jectories in hand motion for American sign language (ASL).
Alexander et al. [52] use a neural network based on the ART
to recognize static hand gestures. ART networks are seen to
possess the ability to learn incrementally, thus making them
effective in online learning.

Stergiopoulou and Papamarkos [53] use GNG to model the
topology of the hand itself (rather than more abstract features of
the scene) in various finger-extended postures. The skin color
is used as the dominant feature. From this, finger directions
are extracted based on the centroid of the palm. Classification
is accomplished using Gaussian probability of finger angles.
Angelopoulou et al. [54] present a probabilistic growing neural
gas (A-GNG) method to track the topology of the human hand as
it progresses through various gestures. A-GNG offers improved
topology mapping to the basic GNG algorithm. However, the
approach is chiefly video based and forms the GNG codebook
vectors based on the appearance of the hand rather than on any
of the movement characteristics of the action. This way, the
method is mainly that of a static analysis of hand shape.

The GNG algorithm [36] is a variant of the self-organizing
feature map (SOFM). Because it is capable of tracking a moving
distribution [55], adding new reference nodes, and operating
from static input parameters, it is well suited to the task of
gesture recognition where no labeled data are available. Indeed,
since the acquisition of gesture data is often expensive in terms
of the effort and time required of both the user and the researcher,
such a technique that learns online is particularly desirable.
Furthermore, its ability to grow and alter its topology over time
suggests that it may be effective in learning new gestures as they
are observed. For these reasons, GNG is the clustering method
explored in this paper.

D. Machine Learning

Although techniques described in Section II-C may be
broadly categorized as machine-learning methods, our use of
this term applies to a mechanism by which some manner of
feedback is used to improve future outcomes of a robot’s assis-
tive behavior. Typically, such a mechanism implies the use of
training data to refine a classifier of choice offline as with con-
ventional neural networks. However, a goal of this paper is to
create an online learning modality that utilizes direct interaction
with the user so that a robot agent converges upon a desirable
configuration. Hence, our goal is to iteratively create a direct
mapping between sensed gestures and inferred goals.

Such sensorimotor mappings of sensor input to robot mo-
tor commands have been successfully used in several applica-
tions. Ritter et al. [56] and Martinetz et al. [57] showed that
SOFMs [58] could be used to discretize input space into recep-
tive fields associated with individual neurons. Each node in the
network then uses an error correction rule to learn an output
composed of a vector of joint angles and a Jacobian to affect
a desired robot configuration. This way, the SOFM is capa-
ble of a nonlinear mapping between input and output spaces.

The topology preserving nature of the SOFM allows for faster
learning than conventional neural networks by taking advan-
tage of the idea that similar inputs should yield similar outputs.
Hence, topological neighbors will encode similar sensor inputs
and thus, they can be made to learn desired outputs as a group.
Walter and Schulten [59] use a NG mapping [35] and apply a
Gaussian neighborhood function to soften learning across the
discretized input space of nodes to produce smoother output
control. A good survey of these and related applications can be
found in [60].

Reinforcement learning (RL) approaches are frequently ap-
plied to the control of robots. Unlike supervised learning ap-
proaches, which require a set of training data with desired output
values, an agent (robot) in an RL framework senses its environ-
ment and operates under some policy so as to maximize the
expected future returns (evaluations) it will receive through a
scalar reward signal. RL techniques use Markov decision pro-
cesses (MDPs) to refine a mapping between an agent’s state and
its future actions. Over successive iterations of input, action,
and evaluation, a policy to maximize reward is learned, which
in the limit, can be seen to approach optimality [61]. Arguably,
the most popular RL technique is that of Q-Learning [62] for its
simplicity and for its lack of need to model the environment. We
apply Q-Learning in this paper as described in Section III-E.

Within an RL framework, an agent in a particular state s of the
environment, an action a is selected based on the highest avail-
able expected return (or Q value). The policy may be periodi-
cally modified to allow for exploration of the action space. Fol-
lowing each episode of state-action sequences toward a known
goal, the policy is evaluated, and a table of state-action pairs
is updated to reflect the actual realized returns (which may be
expected in future episodes under a given policy). Typically,
convergence to an optimal policy requires a large number of
iterations during a training phase. In the field of robotics, this
is generally impractical to achieve, given the potentially large
number of state-action pairs coupled with the mechanical limi-
tations of execution speed, reliability, and energy consumption.
Hence, generalization of actions across similar states is criti-
cal [63].

Touzet [64] presents a method for generalization among
state-action pairs in a Q-Learning framework using Kohonen’s
self-organizing map (Q-Kohon). As previously mentioned, the
SOFM’s topology preserving structure allows for neighborhood
learning. Hence, it applies well to the Q-Learning approach that
underlies Touzet’s method. Q-Kohon uses the SOFM as an asso-
ciative memory. Each node stores a tuple consisting of its state
label (or situation in Touzet’s terminology), an action, and a Q
value. The input situation probes the map for the nearest state
label having a positive Q value. The neighborhood actions are
updated according to the reward received from taking the action
associated with this node.

The approach used in this paper is an adaption of Q-Kohon.
As previously stated, we employ the GNG algorithm so as to
avoid extensive parameter tuning. In addition, the capability of
the GNG topology to add nodes in the presence of new gesture
forms or significant distribution error is seen as key. However,
the strengths of the SOFM paradigm remain available to us.

YANIK et al.: GESTURE LEARNING INTERFACE FOR SIMULATED ROBOT PATH SHAPING WITH A HUMAN TEACHER 45

Usually, reinforcement learning utilizes an automated, inter-
nally generated reward function. As previously mentioned, the
number of trials required to learn an optimal policy in this case
is large. Furthermore, the reward function is typically sparse in
nature. For example, Tesauro’s implementation of a backgam-
mon player taught by reinforcement learning assigned a reward
of 1 (one) for a winning game and a reward of 0 (zero) oth-
erwise. Given the huge state space of the backgammon game,
the player required hundreds of thousands of games to become
proficient [61].

For our application to assistive robotics, and in particular, to
robotic agents capable of learning gestured human commands,
such lengthy training phases are not feasible. As such, several
variants of knowledge transfer between human teachers and
robots have been devised. A summary of these approaches was
produced by Knox and Stone [65] that covers advice-taking
agents, learning by example, and human-generated reward sig-
nals. The authors note that the advising of agents in a mean-
ingful way may involve expertise beyond that of a typical user.
Learning by example, in which the user demonstrates a desired
response, may place a burden on the user to observe the outcome
or require that they possess expertise to generate an adequate
example (as with simulated aircraft operation).

One straightforward way for a human teacher to influence the
learning of a robotic agent is by allowing them to control a sim-
ple good/bad reward indicator. Kaplan et al. [66] proposed the
use of the animal training technique known as clicker training
to teach an AIBO dog robot to learn complex actions. Blumberg
et al. [67] extend this idea to use reinforcement learning to in-
struct virtual characters. Breazeal and Thomaz [68] use RL in a
simple environment with a small number of states to show that
tasks within this space can be learned through clicker-like guid-
ance. Kartoun et al. [69] create an extension to Q(λ) (Q-Learning
with mulitple step eligibility tracing) to switch between fully
autonomous and semiautonomous operation (accepting human
guidance) in a bag emptying task. This approach, called CQ(λ)
allows for levels of collaboration with a human observer. It is
shown that the influence of human guidance speeds the learning
process.

Similarly, Kuno et al. [70] use face identification and hand
gesture recognition to control an intelligent wheelchair. The
system makes an initial assumption of an appropriate direction
and speed response for the wheelchair based on a best guess
at the user’s gesture. If the user approves of the response, it is
assumed that they will repeat the gesture. This way, the chair’s
response is reinforced and the gesture is deemed registered for
future use.

Since this paper assumes an unskilled human user who is at-
tempting to train an assistive robot, we feel that clicker training
style approach is appropriate. And, as noted by Knox et al. [71],
a human trainer has a broader view of the benefit of a spe-
cific individual action than is considered by MDPs. Rather, the
trainer may give reward based on a qualitative view of how
a task should be performed by an agent. These authors sug-
gest that this observation indicates that using a human teacher
is more akin to a supervised learning approach. However, for
simplicity and to facilitate the incorporation of other reward

Fig. 2. System flow diagram. User feedback is automated for the experiments
described here. The human user would generate the reward in the eventual
implementation.

modalities in the future, this paper makes use of the Q-Learning
method.

We assume that a goal configuration is known by the user, and
that through gesture and a simple reward or punishment evalu-
ation of the robot’s response, the robot will eventually achieve
this configuration. Certainly, higher dimensional configurations
will be more challenging to attain with binary feedback. Fur-
thermore, some trajectories toward the final configuration may
allow the robot to pass through undesirable configurations. We
leave the assessment of trajectory to future work. Hence, our
learning algorithm essentially undertakes the problem of de-
veloping the user’s goal rather than modeling the environment
to obtain ever higher rewards. The shortest path to the goal is
understood to yield the greatest benefit.

III. METHOD

This section describes the laboratory fixture used to collect
gesture data, the system by which gesture samples are processed,
and the response learning algorithm. Included are descriptions
of modules that generate data representation, perform cluster-
ing, generate robotic response action, and issue user feedback
(reward).

A. System Overview

An operational flow diagram of the system is shown in Fig 2.
The system implements an end-to-end solution between the per-
formance of gesture by a human user and the learned response
to gesture by a robotic agent. Modules within the system ad-
dress each of the constituent challenges described in Section II
(sensing, data representation, pattern recognition, and machine
learning).

Gesture samples performed by human participants are pre-
sented to the system. The samples captured using the Kinect

46 IEEE TRANSACTIONS ON HUMAN-MACHINE SYSTEMS, VOL. 44, NO. 1, FEBRUARY 2014

RGB-D sensor are processed and features (DIs) are extracted
to form motion descriptors. Descriptors are applied to a GNG-
based clusterer which maps the topology of the input space. A
reference node within the GNG cloud is selected for each motion
and one of its available responses is executed by the robot agent.
A (simulated) human user evaluates the response and provides
feedback (or reward). The reward is used to update the action
response for future reference. This way, responses are shown to
converge according to the user’s preference for a given gesture
type.

The approach described in this paper seeks to overcome cer-
tain limitations of prevailing methods by using nonintrusive
sensing, learning with the human as teacher through a relatively
short-training phase, and learning goal configurations with no
prior knowledge of the user’s preferences. The remainder of this
section details the fixture and algorithms used in pursuit of these
contributions.

B. Data Collection

Data were collected for three essential hand gestures that were
deemed a baseline command set for the eventual operation of
an assistive robot. Although our approach places no expectation
on the user to perform gestures in a particular manner, motion
models for these gestures were taken from the ASL dictionary
(as demonstrated in [72]) to facilitate repeatability. The gestures
included come closer, go away, and stop. These three gesture
types were seen as a baseline essential collection of commands
for an assistive robot. Although the gesture command vocab-
ulary will be increased in future work, these were considered
sufficient for this proof-of-concept research. The stop gesture
requires special treatment since it intuitively suggests that the
robot is presently executing an earlier command. Hence, the
problem of gesture segmentation arises. Since segmentation is
not the focus of this paper, we leave its consideration to future
work. Instead, stop will not be interpreted in its literal sense, but
rather as having a specific goal configuration similar to that of
come closer and go away.

Data samples were collected using the depth sensing feature
of the Microsoft Kinect RGB-D camera [25]. The Kinect gen-
erates depth maps of the user at approximately 30 frames/s.
Samples were collected over 5-second intervals for a total of
150 data points per sample. The data collection program was
developed using the robot operating system (ROS) [73]. ROS
was selected for its open source and for its active community
of research-oriented users. Furthermore, it supports a variety of
simulated and real-world robotic platforms through a message-
based publisher/subscriber environment. Thus, direct migration
of this paper to working hardware is expected to be a viable
path.

Within ROS, the Kinect data stream was accessed using the
PrimeSense OpenNI Kinect package [74] to track the skele-
tal joints of the participant by ROS messages. Example Kinect
depth images showing skeletal tracking are given in Fig. 3. Hand
trajectories overlaid on the subfigures highlight the candidate
gesture motions. Depth data for 11 joints were collected over
the sampling interval for possible future work. However, only

Fig. 3. PrimeSense OpenNI depth images showing skeletal tracking. Trajec-
tories sketched in green depict the candidate gesture motions: (a) come closer,
(b) go away, and (c) stop. Note that the PrimeSense interface displays the mirror
image of the actor.

the participant’s left-hand joint is considered for gesture char-
acterization in this experiment. Data points consist of (x, y, z)
coordinates.

C. Feature Extraction

Using an approach similar to [33], DIs were extracted from
each 150 point data sample for motion of the left-hand joint. Po-
sition data for each of the three dimensions were first smoothed
by convolution with the discrete Gaussian kernel given by (1)

YANIK et al.: GESTURE LEARNING INTERFACE FOR SIMULATED ROBOT PATH SHAPING WITH A HUMAN TEACHER 47

Fig. 4. Feature vector format for a depth-sampled gesture. DIs are concate-
nated in chronological order by the frame number.

with σ2 = 1.0

G = [1, 4, 6, 4, 1]/16. (1)

As a further smoothing step, an evolution time of seven time
steps was applied to position data so that short-term jitter of the
actor could be filtered and longer term trends could be captured.

Velocity and acceleration data were then computed from po-
sition data for each dimension. The five highest occurrences
of peak acceleration were selected as the DIs. As discussed
in [33], such peaks occur at sharp changes of direction or speed,
and starts/stops. For our DIs, the (x, y, z) coordinates and the
frame number were recorded. Given the Kinect’s capability to
represent the positions of these peaks in 3-D space and with the
frame number accounting for discrete time, the spatial trajectory
of gesture execution is effectively generated. Hence, DIs did not
require the extra dimensions of velocity and acceleration to be
stored for useful discrimination between gesture types.

Feature vectors for each sample were constructed by the con-
catenation of the five DIs to yield a 20 × 1 descriptor as shown
in Fig. 4. Both frame numbers and coordinate values were scaled
to [0, 1], based on the range of values of their respective types so
as to prevent any given field from dominating the feature vector.
Feature vectors were then clustered using GNG (see below).

D. Growing Neural Gas Algorithm

The GNG algorithm proposed by Fritzke [36] is a vector quan-
tization technique in which neurons (nodes) represent codebook
vectors that encode a submanifold of input data space. In this re-
gard, GNG is similar to the NG algorithm proposed by Martinetz
and Schulten [35]. GNG differs from NG in its ability to form
connections between nodes and, thus, preserves a topological
representation of input space in a manner functionally similar
to the SOFM. Furthermore, it is capable of adding new nodes
so as to effectively map the topology of a changing input data
distribution. The basic GNG algorithm is given by Algorithm 1
[36]. For our implementation of GNG, operating parameters
were: εb = 0.05, εn = 0.0006, λ = 100, α = 0.5, β = 0.0005,
and amax = 88. We also impose a maximum limit of 100 nodes
on the network.

In our approach, the A (node list) data structure consists of a
C++ vector class of reference nodes. Each reference node carries
its feature vector w, its node label, and of key importance, the re-

sponse configuration (x, y, θ) for a 2-D mobile robot. Therefore,
as the GNG algorithm updates the cloud of reference nodes with
each input vector, the kNN in the GNG cloud already holds a
learned robotic response (or action as described below) based on
the history of the system. This way, the GNG algorithm avoids
the task of correctly labeling the input in favor of generating a
desirable response. Rather, the action associated with the node
serves as its label. Using a reward signal from the user to gauge
the quality of response, the algorithm attempts to improve the
response outcome as it quantizes the input space.

E. Q-Learning

Within a reinforcement learning framework, an agent at-
tempts to learn an optimal policy to map its set of possible
states to future actions that are likely to be encouraged (or rein-
forced) through a reward signal from the environment. This way,
the total reward received throughout a sequence of state-action
pairs may be maximized. Typically, a table of the state-action
values (Q values) is maintained. As the agent encounters a state,
the highest valued action for that state is selected and performed.
The reward signal is observed and the table is updated according

48 IEEE TRANSACTIONS ON HUMAN-MACHINE SYSTEMS, VOL. 44, NO. 1, FEBRUARY 2014

Fig. 5. Example, (2-D) GNG neighborhood with associated action vectors and
most recent rewards. Gestures that fall closest to node 1 will elicit the highest
valued action from nodes 1–6.

to the following equation:

Qt+1(s, a)←Qt(s, a)+α[r+γ(max
a

Qt(s′, a)) − Qt(s, a)]
(2)

where (s, a) is a state-action pair, (s′, a) is a particular next
state-action pair that may be chosen from the current state, α
is a positive learning rate, γ is the discount factor that allows
near-term rewards to be valued more highly than future rewards,
and r ∈ [−1, 0, 1] is the reward value. Reward values of −1 and
1 reflect user feedback of bad and good, respectively. A reward
of 0 reflects an outcome that requires no future adjustment (i.e.,
the human user is satisfied and training has been completed for a
given gesture). For our implementation, each gesture sample is
followed by a training episode of a single time step. Discounting
is unnecessary since each reward from the human user is equally
important as evidence of movement toward or away from the
goal configuration. Hence, γ = 1. With α = 1 and multiplying
the reward by a step length (stepLen) of linear forward progress,
the update rule is reduced to the form

Qt+1(s, a) ← r(stepLen) + max
a

Qt(s′, a)). (3)

For this paper, stepLen = 0.1. This quantity is the same
as the final error tolerance for the robot to achieve the goal
configuration.

As previously mentioned, topological neighbors in the net-
work may be expected to represent similar vectors in input space
(sensed gestures) and should, therefore, produce similar output
actions. Thus, we attempt to utilize the topology of the GNG
cloud to accelerate learning by taking into account the rewards
obtained by neighboring nodes (see Fig. 5). A network-structural
interpretation of (3) can be stated as selection of the highest val-
ued action vector from the neighborhood of a reference node
since that vector has the richest history of positive reward. The

selection and update process is given by Algorithm 2 (adapted
from Touzet [64]).

Each node in the GNG network represents a state-action tuple
consisting of an input (gesture) feature vector (which is the state
label), an output action vector, and a Q value. As each gesture is
sensed, the GNG network is scanned for the node with the closest
input vector by Euclidean distance. The set of available actions
is taken from those of its topological neighbors. For our imple-
mentation, the Q value is the length of the action vector. Since
action vectors pointing to locations in configuration space that
are farthest from the origin must have experienced the greatest
number of positively reinforced episodes, they represent actions
that promise the greatest likelihood of future reward. Given this
intuition, (2) becomes a simple search for the longest vector in
a node’s immediate neighborhood. For positive reinforcements
(r = 1), the node’s action vector is updated with that of its high-
est Q-valued neighbor increased by a uniform step length along
its current trajectory.

An action vector, whose reinforcement value is negative (r =
−1) indicates an action that would move the agent farther from
the user’s goal. If no neighboring node possesses a higher valued,
positively reinforced action, exploration is called for and the
node’s action vector is updated with a small randomized angular
correction. Repeated application of randomized correction will
eventually yield an action that will be positively rewarded. This
scenario is depicted in Fig. 6.

If the reinforcement is 0 (zero), the action vector is deemed
trained. In our implementation, such a node’s action vector
is removed from consideration by its neighbors in subsequent
queries. This is to avoid the possibility of assigning action

YANIK et al.: GESTURE LEARNING INTERFACE FOR SIMULATED ROBOT PATH SHAPING WITH A HUMAN TEACHER 49

Fig. 6. Q-Learning exploration for successive approximation of actions toward
a goal. Steps 1–5 receive positive reward and proceed in a consistent direction
moving closer to the goal. Continuing this policy at step 6 would cause the
robot to move farther from the goal than it had been at step 5 and would
receive a negative reward. Random angular adjustments are attempted until the
accumulated action vector comes closer to the goal as in step 6′.

Fig. 7. Input gesture to robot action mapping. Input gestures are clustered
by GNG and mapped through successive reinforcement to desired robot action
vectors.

vectors repeatedly that may be incorrect for similar but dif-
ferent gestures. This way, the finally trained network will form
an associative memory mapping between gestures and actions
as shown in Fig. 7.

F. Simulation Environment

As a simulated proxy for our mobile robot, the ROS Turtlesim
environment was used. Turtlesim is a basic ROS tutorial con-
struct capable of accepting and attaining successive (x, y, θ)
configuration goals. The problem of movement in higher de-
grees of freedom (DOF), although significant, is expected to
be feasible using our approach. We consider potential issues of
doing so as future work in Section VI.

G. Reward Generation

A key aspect of our approach is the use of a simple (binary)
user-generated reward on the relative success of a robotic re-
sponse to gesture. Reward is utilized to effectively guide online
system learning in real time and with no initial training data.
However, as previously stated, obtaining gesture data and the
associated reward may be expensive. For this paper, genera-
tion of a reward signal was automated in the software accord-
ing to predefined goal configurations. These configurations (see
Table I) represent relative translations (x, y, θ) from the start-
ing position of the robot (0, 0, 0) and were chosen to be easily
distinguishable.

TABLE I
GOAL CONFIGURATIONS

IV. EXPERIMENTATION

A. Data Collection

The Kinect RGB-D sensor was set at desk height (75 cm)
with the participant standing at a distance of 1.3 m. The Kinect
was angled so that the 11 tracked joints were fully visible in
the depth image. Participants were invited to shift their weight
or angle of address occasionally so as to introduce a nominal
variation in the collected data. Five volunteers were asked to
perform 50 repetitions for each of the three candidate gestures:
come closer, go away, and stop. This yielded 250 samples for
each gesture type for a total of 750 samples. DIs computed for
each gesture type are shown in Fig. 8(a)–(c). We will refer to
this as our real dataset so as to distinguish it from the idealized
dataset discussed below. It can be seen that the real data are not
well separated and thus, might not be expected to yield GNG
neighborhoods that are readily clustered by gesture type.

For the purposes of comparison, a second (ideal) dataset
was created based on a single exemplar gesture of each type.
A collection of 750 samples was generated by the application
of uniformly distributed noise within a margin of 5% of each
DIs in each exemplar. DIs for the ideal dataset are shown in
Fig. 8(d)–(f).

B. Neighborhood Radius

Three scenarios were performed for each dataset to explore
our system’s sensitivity to vary the radius of the GNG neighbor-
hood. The respective radii dictated which nodes were considered
neighbors for the purposes of action selection. These scenarios
were:

1) (Large) All neighbors connected to the reference node by
a single link were considered.

2) (Medium) All neighbors within the mean distance from
the reference node were considered.

3) (Small) Only the reference node itself was considered.

C. Data Processing

For each dataset, (real and ideal), the 750 samples were ran-
domly divided into two groups. One group consisted of 300
samples (100 of each gesture type) and was applied in epochs to
train the GNG network to map the topology of the input space
with a low degree of error. No action learning occurred during
this time. Application of this first group was not a necessary
step, although it facilitated smoother action learning of actions
in the second step.

A second group of 450 samples (150 of each gesture type)
was then applied in epochs and learning of actions was allowed
to proceed. For each of the 450 samples, feature vectors were

50 IEEE TRANSACTIONS ON HUMAN-MACHINE SYSTEMS, VOL. 44, NO. 1, FEBRUARY 2014

Fig. 8. DIs for real (a)–(c), and ideal (d)–(f) datasets for gestures: Come closer (a) and (d), Go away (b) and (e), and Stop (c) and (f). Note: apparent differences
in data spread for ideal data are due to scaling within the individual plots.

computed and passed to the GNG algorithm, an action was
selected and performed, reward was automatically generated,
and the reference node was updated accordingly.

V. RESULTS

The per sample error was calculated between the updated
goal configuration and the known goal for that sample’s gesture
type. Following each epoch, the average error per gesture type
was also computed. In this manner, 250 epochs were executed.
This process was repeated for each of the three neighborhood
radius scenarios. Resulting average error curves for the real and
ideal datasets using GNG and for the real dataset using kNN are
shown in Fig. 9.

As previously stated, once the reward signal is given a value of
0 (zero), the near reference node effectively becomes an associa-
tive memory entry, capable of producing a generalized outcome
for all inputs that fall within its receptive field. Once trained, the
GNG-to-action mapping strategy of our system performed well.
Again, we employ TurtleSim to fully close the loop between a
gestured command from a human user and a final learned robotic
actuation. Furthermore, the relative size of the TurtleSim utility
matches that of our envisioned environment. Hence, the scale
and accuracy of the generated actions might help the reader to
better visualize the effectivess of our approach. Typical learned
action trajectories can be seen in Fig. 10.

Results shown in Fig. 9 are typical with the exception of
Fig. 9(c). This scenario is susceptible to erratic convergence due
to randomizations that occur during exploration compounded
by its larger neighborhood of possibility. For the well-separated

TABLE II
AVERAGE CUMULATIVE ERROR FOR 100 RUNS

ideal dataset, convergence occurs quickly and the speed of con-
vergence varies directly with neighborhood size. Conversely,
for the poorly separated real dataset, convergence is slower
and varies inversely with neighborhood size. However, use of
GNG routinely showed faster convergence over the kNN al-
gorithm for similar sized neighborhoods of consideration as
can be seen in Fig. 9. It is noted that this approach may see
slower learning rates and higher DOF. Previous work by the
researchers [75] with 1-D goals and nonbinary (rich) reward
showed convergence in approximately one-tenth the number of
iterations.

The come closer gesture is qualitatively different in chore-
ography than the other two gestures used here. It is performed
primarily in a plane that is approximately perpendicular to the
image plane of the RGB-D sensor, while go away and stop
are performed in a parallel plane. Because of this dissimilarity,
more rapid convergence for come closer is frequency observed,
although exploration by our learning algorithm may occasion-
ally elicit other outcomes.

Because the exploratory aspects of Q-Learning utilize ran-
domization to choose possible future outcomes, the general re-
lationships shown may fail to hold from run to run. Table II

YANIK et al.: GESTURE LEARNING INTERFACE FOR SIMULATED ROBOT PATH SHAPING WITH A HUMAN TEACHER 51

Fig. 9. Average error curves for varying neighborhood radii. Each row of subfigures shows results for a given scenario: (a)–(c) show results for the real dataset
using GNG; (d)–(f) show results for the real dataset using kNN; (g)–(i) show results for the ideal dataset using GNG. Within each row, neighborhood radius
increases from left to right. It can be seen that for poorly separated (real) data, GNG converges more rapidly than kNN for all neighborhood radii. Furthermore,
with well separated (ideal) data, the performance of GNG improves with increasing neighborhood size. (a) Real data, small neighborhood. (b) Real data, medium
neighborhood. (c) Real data, large neighborhood. (d) Real data, small (k = 1) neighborhood. (e) Real data, medium (k = 3) neighborhood. (f) Real data, large
(k = 5) neighborhood. (g) Ideal data, small neighborhood. (h) Ideal data, medium neighborhood. (i) Ideal data, large neighborhood.

shows average outcomes for 100 such runs. In general, the ex-
pected outcomes are qualitatively produced. Again, the data
show that, for well-separated data, the GNG algorithm allows
faster learning with increasing neighborhood size. For poorly
separated data, the inverse relationship is seen.

VI. CONCLUSIONS AND FUTURE WORK

In this paper, we have presented a new approach toward the
development of a gesture-based human–machine interface. An
end-to-end approach is presented which maps arm-scale gesture
by a human user to a learned response by a robotic agent through
repeated applications of user-provided reward. Between these

two end points, the constituent challenges are addressed in the
areas of sensor selection, data representation, pattern recogni-
tion, and machine learning. As a composite approach, the pro-
posed system overcomes many of the shortcomings of previous
efforts.

It has been shown that 3-D data from an RGB-D camera can
be used to generate a useful descriptor of gesture in the form
of prominent DIs. Furthermore, the GNG algorithm utilization
herein is capable of differentiating between these descriptors
more effectively than a conventional kNN approach. Addition-
ally, although Q-Learning typically requires a large number of
iterations to produce effective results, our value function and
GNG generalization technique shows favorable results relatively

52 IEEE TRANSACTIONS ON HUMAN-MACHINE SYSTEMS, VOL. 44, NO. 1, FEBRUARY 2014

Fig. 10. Learned action trajectories in TurtleSim for gestures: (a) come closer, (b) go away, and (c) stop. Markers placed in upper right and bottom corners
represent goal positions as shown. Trajectory development after 5, 25, and 100 epochs is depicted by white trace lines. As the GNG-to-action mapping data
structure matures, learned trajectories and final angles of approach are seen to be progressively more accurate in the attainment of goal configurations.

quickly and with a small dataset. We envision a use model in
which the user performs a single gesture and provides repeated
reward input so as to allow a GNG reference node to train fully.
Our near-term investigations will examine the possibility of us-
ing this approach to further reduce the number of gesture motion
samples that are required.

The problem of achieving goal configurations in more than
three DOF is seen as feasible using the proposed approach. Each
DOF could be isolated so that movement could proceed along
each one in turn until such motion begins to increase (rather than
decrease) overall error toward the goal. However, it is foreseen
that this process would be difficult for an actual human trainer
to entertain, since visualization of a robot’s configuration as a
Cartesian space may be difficult, if not impossible, for higher
dimensions. Certainly, a path-planning component would be
called for which considers the robot’s configuration in light of
the geometry of the environment and the social sensibilities
of the user (speed, angle of approach, visibility, etc.). As it is
implemented here, the proposed approach is seen as practical for
mapping of a robot’s end effector and, thus, useful for common
applications.

Segmentation of gestures (gesture spotting) is a typical prob-
lem in gesture recognition. Although our future work will ad-
dress spotting, our focus here has been on validation of a real-
time learning technique that produces desirable outcomes using
a human teacher and a simple, binary reward signal.

Finally, online learning of new gestures will be explored.
Certainly, for the envisioned system to effectively assist the user,
the vocabulary of known commands must be open to amendment
as needed.

REFERENCES

[1] K. Covinsky, R. Palmer, R. Fortinsky, S. Counsell, A. Stewart,
D. Kresevic, C. Burant, and C. Landefeld, “Loss of independence in ac-
tivities of daily living in older adults hospitalized with medical illnesses:
Increased vulnerability with age,” J. Amer. Geriatr. Soc., vol. 51, no. 4,
pp. 451–458, 2003.

[2] P. Yanik, J. Merino, J. Manganelli, L. Smolentzov, I. Walker, J. Brooks,
and K. Green, “Sensor placement for activity recognition: Comparing
video data with motion sensor data,” Int. J. Circuits, Syst. Signal Process.,
no. 5, pp. 279–286, 2011.

[3] A. Friedman, The Adaptable House: Designing Homes for Change. New
York, NY, USA: McGraw-Hill, 2002.

[4] S. Iwarsson and A. Stahl, “Accessibility, usability and universal design—
Positioning and definition of concepts describing person-environment re-
lationships,” Disabil. Rehabil., vol. 25, no. 2, pp. 57–66, 2003.

[5] W. Preiser and E. Ostroff, Universal Design Handbook. New York, NY,
USA: McGraw-Hill, 2001.

[6] D. Cook, M. Youngblood, E. Heierman, K. Gopalratnam, S. Rao, A. Litvin,
and F. Khawaja, “MavHome: An agent-based smart home,” in Proc. IEEE
Int. Conf. Pervas. Comput. Commun., 2003, pp. 521–524.

[7] B. DeRuyter and E. Pelgrim, “Ambient Assisted-Living Research in Care-
Lab,” Interactions, vol. XIV, no. 4, pp. 30–34, 2007.

[8] S. Intille, K. Larson, and E. Tapia, “Designing and evaluating technology
for independent aging in the home,” in Proc. Int. Conf. Aging, Disabil.
Independ., 2003, pp. 1–15.

[9] C. Kidd, R. Orr, G. Abowd, C. Atkeson, I. Essa, B. MacIntyre, E. Mynatt,
T. Starner, and W. Newstetter, The Aware Home: A Living Laboratory
for Ubiquitous Computing Research. New York, NY, USA: Springer-
Verlag, 1999, pp. 191–198.

[10] I. Walker and K. Green, “Architectural Robotics: Unpacking the Hu-
manoid,” presented at the ARCHIBOTS Worksh. Architect. Robot., Or-
lando, FL, USA, 2009.

[11] J. Brooks, I. Walker, K. Green, J. Manganelli, J. Merino, L. Smolentzov,
T. Threatt, P. Yanik, S. Ficht, R. Kriener, M. Mossey, A. Mutlu, D. Salvi,
G. Schafer, and P. Srikanth, P. Xu, “Robotic alternatives for bedside en-
vironments in healthcare,” Int. J. Syst. Appl., Eng. Develop., vol. 6, no. 3,
pp. 308–316, 2012.

[12] A. Threatt, J. Merino, K. Green, I. Walker, J. Brooks, S. Ficht, R. Kriener,
M. Mossey, A. Mutlu, D. Salvi, G. Schafer, S. Pallavi, P. Xu, J. Manganelli,
and P. Yanik, “A vision of the patient room as an architectural-robotic
ecosystem,” presented at the IEEE/RSJ Int. Conf. Robots Syst., Vila Moura,
Algarve, Portugal, 2012.

[13] I. Walker, J. Brooks, K. Green, J. Manganelli, L. Smolentzov, A. Threatt,
P. Yanik, and J. Merino, “Interactive robotic environments in healthcare,”
in Proc. Workshop Interact. Syst. Healthcare, 2011, pp. 1–5.

[14] S. Mitra and T. Acharya, “Gesture recognition: A survey,” IEEE Trans.
Syst., Man, Cybern. C, Appl. Rev., vol. 37, no. 3, pp. 311–324, May 2007.

[15] S. Jin, Y. Li, G. Lu, J. Luo, W. Chen, and X. Zheng, “Som-based hand
gesture recognition for virtual interactions,” in Proc. IEEE Int. Symp. VR
Innovat., Mar. 2011, pp. 317–322.

[16] J. Lementec and P. Bajcsy, “Recognition of arm gestures using multiple
orientation sensors: Gesture classification,” in Proc. IEEE 7th Int. Conf.
Intell. Transport. Syst., Oct. 2004, pp. 965–970.

[17] S. Zhou, Q. Shan, F. Fei, W. Li, C. Kwong, P. Wu, B. Meng, C. Chan,
and J. Liou, “Gesture recognition for interactive controllers using MEMS

YANIK et al.: GESTURE LEARNING INTERFACE FOR SIMULATED ROBOT PATH SHAPING WITH A HUMAN TEACHER 53

motion sensors,” in Proc. IEEE 4th Int. Conf. Nano/Micro Eng. Molecul.
Syst., Jan. 2009, pp. 935–940.

[18] Y. Yamazaki, H. Vu, P. Le, Z. Liu, C. Fatichah, M. Dai, H. Oikawa,
D. Masano, O. Thet, Y. Tang, N. Nagashima, M. L. Tangel, F. Dong, and
K. Hirota, “Gesture recognition using combination of acceleration sensor
and images for casual communication between robots and humans,” in
Proc. IEEE Congr. Evolution. Comput. (CEC), Jul. 2010, pp. 1–7.

[19] C. Zhu and W. Sheng, “Wearable sensor-based hand gesture and daily
activity recognition for robot-assisted living,” IEEE Trans. Syst., Man
Cybern. A, Syst. Humans, vol. 41, no. 3, pp. 569–573, May 2011.

[20] H. Cheng, A. Chen, A. Razdan, and E. Buller, “Contactless gesture recog-
nition system using proximity sensors,” in Proc. IEEE Int. Conf. Consum.
Electron., Jan. 2011, pp. 149–150.

[21] R. Dongseok, U. Dugan, P. Tanofsky, H. Do, S. Young, and K. Sungchul,
“T-less: A novel touchless human-machine interface based on infrared
proximity sensing,” in Proc. IEEE/RJS Int. Conf. Intell. Robots Syst., Oct.
2010, pp. 5220–5225.

[22] S. Berman and H. Stern, “Sensors for gesture recognition systems,” IEEE
Trans. Syst., Man, Cybern. C, Appl. Rev., vol. 42, no. 3, pp. 277–290, May
2012.

[23] S. Beach, R. Schulz, J. Downs, J. Matthews, B. Barron, and K. Seelman,
“Disability, age, and informational privacy attitudes in quality of life tech-
nology applications: Results from a national Web survey,” ACM Trans.
Access. Comput., vol. 2, no. 1, pp. 1–21, 2009.

[24] G. Demeris, B. Hensel, M. Skubic, and M. Rantz, “Senior residents’
perceived need of and preferences for “smart home” sensor technologies,”
Int. J. Technol. Assessment Health Care, vol. 24, pp. 120–124, 2008.

[25] Microsoft Xbox 360 + Kinect Website, (2013). [Online]. Available:
http://www.xbox.com/en-US/kinect

[26] C. BenAbdelkader, R. Cutler, and L. Davis, “Gait recognition using image
self-similarity,” EURASIP J. Appl. Signal Process., vol. 2004, pp. 572–
585, 2004.

[27] A. Bobick, “Movement, activity and action: The role of knowledge in the
perception of motion,” Philosoph. Trans. Roy. Soc. B: Biol. Sci., vol. 352,
no. 1358, pp. 1257–1266, 1997.

[28] A. Karahoca and M. Nurullahoglu, “Human motion analysis and action
recognition,” in Proc. 1st WSEAS Int. Conf. Multivariate Anal. Appl. Sci.
Eng., 2008, pp. 156–161.

[29] N. Dalal, B. Triggs, I. Rhone-Alps, and F. Montbonnot, “Histograms of
oriented gradients for human detection,” in Proc. IEEE Comput. Soc. Conf.
Comput. Vis. Pattern Recog., 2005, pp. 886–893.

[30] G. Johansson, “Visual perception of biological motion and a model for its
analysis,” Percept. Psychophys., vol. 14, no. 2, pp. 201–211, 1973.

[31] R. Cutler and L. Davis, “Robust real-time periodic motion detection, anal-
ysis, and applications,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 22,
no. 8, pp. 781–796, Aug. 2000.

[32] I. Junejo, E. Dexter, I. Laptev, and P. Pérez, “Cross-view action recognition
from temporal self-similarities,” in Proc. Eur. Conf. Comput. Vis., 2008,
pp. 293–306.

[33] C. Rao, A. Yilmaz, and M. Shah, “View-invariant representation and
recognition of actions,” Int. J. Comput. Vis., vol. 50, no. 2, pp. 203–226,
2002.

[34] S. Grossberg, “Adaptive pattern classification and universal recoding: I.
Parallel development and coding of neural feature detectors,” Biolog.
Cybern., vol. 23, no. 3, pp. 121–134, 1976.

[35] T. Martinetz and K. Schulten, in A “Neural-Gas” Network Learns
Topologies, T. Kohonen, K. Makisara, O. Simula, and J. Kangas, Eds.
Amsterdam, The Netherlands: Elsevier, 1991.

[36] B. Fritzke, “A growing neural gas network learns topologies,” Adv. Neural
Inf. Process. Syst. 7, vol. 7, pp. 625–632, 1995.

[37] A. Wilson and A. Bobick, “Realtime online adaptive gesture recognition,”
in Proc. IEEE 15th Int. Conf. Pattern Recog., 2000, vol. 1, pp. 270–275.

[38] J. Yamato, J. Ohya, and K. Ishii, “Recognizing human action in time-
sequential images using hidden Markov model,” in Proc. IEEE Comput.
Soc. Conf. Comput. Vis. Pattern Recog., 1992, pp. 379–385.

[39] M. Moni and A. Ali, “HMM based hand gesture recognition: A review
on techniques and approaches,” in Proc. IEEE Int. Conf. Comput. Sci. Inf.
Technol., 2009, pp. 433–437.

[40] G. Fang, W. Gao, and J. Ma, “Signer-independent sign language recog-
nition based on SOFM/HMM,” in Proc. IEEE Workshop Recog., Anal.,
Track. Faces Gest. Real-Time Syst., 2001, pp. 90–95.

[41] A. Waibel, T. Hanazawa, G. Hinton, K. Shikano, and K. J. Lang, “Phoneme
recognition using time-delay neural networks,” IEEE Trans. Acoust.,
Speech Signal Process., vol. 37, no. 3, pp. 328–339, Mar. 1989.

[42] L. Rabiner, “A tutorial on hidden Markov models and selected applications
in speech recognition,” Proc. IEEE, vol. 77, no. 2, pp. 257–286, Feb. 1989.

[43] A. Bobick and A. Wilson, “A state-based approach to the representation
and recognition of gesture,” IEEE Trans. Pattern Anal. Mach. Intell.,
vol. 19, no. 12, pp. 1325–1337, Dec. 1997.

[44] S. Lee, “Automatic gesture recognition for intelligent human-robot inter-
action,” in Proc. IEEE 7th Int. Conf. Autom. Face Gest. Recog., 2006,
pp. 645–650.

[45] D. Frolova, H. Stern, and S. Berman, “Most probable longest common
subsequence for recognition of gesture character input,” IEEE Trans. Cy-
bern., vol. 43, no. 3, pp. 871–880, Jun. 2013.

[46] J. Prasad and G. Nandi, “Clustering method evaluation for hidden
Markov model based real-time gesture recognition,” in Proc. Int.
Conf. Adv. Recent Technol. Commun. Comput., Oct. 2009, pp. 419–
423.

[47] T. Schlömer, B. Poppinga, N. Henze, and S. Boll, “Gesture recognition
with a Wii controller,” in Proc. 2nd Int. Conf. Tangible Embedded Inter-
act., 2008, pp. 11–14.

[48] J. Wachs, U. Kartoun, H. Stern, and Y. Edan, “Real-time hand gesture
telerobotic system using fuzzy c-means clustering,” in Proc. IEEE 5th
Biannu. World Autom. Congr., 2002, vol. 13, pp. 403–409.

[49] W. Knox, “Learning from human-generated reward,” Ph.D. dissertation,
Dept. Comput. Sci., Univ. Texas at Austin, Austin, TX, USA, 2012.

[50] A. Varkonyi-Koczy and B. Tusor, “Human–computer interaction for smart
environment applications using fuzzy hand posture and gesture mod-
els,” IEEE Trans. Instrum. Meas., vol. 60, no. 5, pp. 1505–1514, May
2011.

[51] M. Yang and N. Ahuja, “Recognizing hand gesture using motion trajec-
tories,” in Proc. IEEE Comput. Soc. Conf. Comput. Vis. Pattern Recog.,
Jun. 1999, vol. 1, pp. 466–472.

[52] T. Alexander, H. Ahmed, and G. Anagnostopoulos, “An open source
framework for real-time, incremental, static and dynamic hand ges-
ture learning and recognition,” Human-Comput. Interact. Novel Interact.
Methods Tech., vol. 5611, pp. 123–130, 2009.

[53] E. Stergiopoulou and N. Papamarkos, “A new technique for hand gesture
recognition,” in Proc. Int. Conf. Image Process., Oct. 2006, pp. 2657–
2660.

[54] A. Angelopoulou, A. Psarrou, J. Garcia-Rodriguez, and G. Gupta, “Track-
ing gestures using a probabilistic self-organising network,” in Proc. Int.
Joint Conf. Neural Netw., Jul. 2010, pp. 1–7.

[55] J. Holmström, “Growing neural gas: Experiments with GNG, GNG with
utility and supervised GNG,” Master’s thesis, Dept. Inf. Technol., Uppsala
Univ., Uppsala, Sweden, 2002.

[56] H. Ritter, T. Martinetz, and K. Schulten, “Topology-conserving maps for
learning visuo-motor-coordination,” Neural Netw., vol. 2, no. 3, pp. 159–
168, 1989.

[57] T. Martinetz, H. Ritter, and K. Schulten, “Three-dimensional neural net
for learning visuomotor coordination of a robot arm,” IEEE Trans. Neural
Netw., vol. 1, no. 1, pp. 131–136, Mar. 1990.

[58] T. Kohonen, “The self-organizing map,” Proc. IEEE, vol. 78, no. 9,
pp. 1464–1480, Sep. 1990.

[59] J. Walter and K. Schulten, “Implementation of self-organizing neural net-
works for visuo-motor control of an industrial robot,” IEEE Trans. Neural
Netw., vol. 4, no. 1, pp. 86–96, Jan. 1993.

[60] G. Barreto, A. Araújo, and H. Ritter, “Self-organizing feature maps for
modeling and control of robotic manipulators,” J. Intell. Robot. Syst.,
vol. 36, no. 4, pp. 407–450, 2003.

[61] R. Sutton and A. Barto, Reinforcement Learning: An Introduction, vol. 1.
Cambridge, U.K.: Cambridge Univ. Press, 1998, no. 1.

[62] C. Watkins and P. Dayan, “Q-learning,” Mach. Learn., vol. 8, no. 3,
pp. 279–292, 1992.

[63] C. Touzet, 2003.
[64] C. Touzet, “Neural reinforcement learning for behaviour synthesis,”

Robot. Auton. Syst., vol. 22, no. 3, pp. 251–281, 1997.
[65] W. Knox and P. Stone, “Tamer: Training an agent manually via evalua-

tive reinforcement,” in Proc. IEEE 7th Int. Conf. Develop. Learn., 2008,
pp. 292–297.

[66] F. Kaplan, P. Oudeyer, E. Kubinyi, and A. Miklósi, “Robotic clicker train-
ing,” Robot. Auton. Syst., vol. 38, no. 3, pp. 197–206, 2002.

[67] B. Blumberg, M. Downie, Y. Ivanov, M. Berlin, M. Johnson, and
B. Tomlinson, “Integrated learning for interactive synthetic characters,”
ACM Trans. Graphics, vol. 21, no. 3, pp. 417–426, 2002.

[68] A. Thomaz and C. Breazeal, “Teachable robots: Understanding human
teaching behavior to build more effective robot learners,” Artif. Intell.,
vol. 172, no. 6–7, pp. 716–737, 2008.

[69] U. Kartoun, H. Stern, and Y. Edan, “A human-robot collaborative re-
inforcement learning algorithm,” J. Intell. Robot. Syst., vol. 60, no. 2,
pp. 217–239, 2010.

54 IEEE TRANSACTIONS ON HUMAN-MACHINE SYSTEMS, VOL. 44, NO. 1, FEBRUARY 2014

[70] Y. Kuno, T. Murashima, N. Shimada, and Y. Shirai, “Interactive gesture
interface for intelligent wheelchairs,” in Proc. IEEE Int. Conf. Multimedia
Expo., 2000, vol. 2, pp. 789–792.

[71] W. Knox, I. Fasel, and P. Stone, “Design principles for creating human-
shapable agents,” in Proc. AAAI Spring 2009 Symp. Agents Learn Human
Teachers, 2009, pp. 79–86.

[72] ASL Pro Website, (2013). [Online]. Available: http://www.aslpro.com/
cgi-bin/aslpro/aslpro.cgi

[73] ROS Website, (2013). [Online]. Available: http://www.ros.org
[74] ROS OpenNI Tracker Website, (2013). [Online]. Available: http://ros.

org/wiki/openni_tracker
[75] P. Yanik, J. Manganelli, J. Merino, A. Threatt, J. Brooks, K. Green, and

I. Walker, “Use of kinect depth data and growing neural gas for gesture
based robot control,” in Proc. 6th Int. Conf. Pervas. Comput. Technol.
Healthcare, La Jolla, CA, USA, 2012, pp. 283–290.

Paul M. Yanik (SM’05) received the B.S.E.E. and
M.S. degrees in computer engineering from North
Carolina State University, Raleigh, NC, USA, in 1989
and 1995, respectively, and the Ph.D. degree in com-
puter engineering from Clemson University, Clem-
son, SC, USA, in 2013.

He is currently an Assistant Professor with the
Department of Electrical and Computer Engineer-
ing Technology, Western Carolina University, Cul-
lowhee, NC, USA. His research interests include
robotics, machine learning and pattern recognition.

Joe Manganelli received the Ph.D. degree in plan-
ning, design, and the built environment (PDBE) from
Clemson University, Clemson, SC, USA, in 2013.

Prior to graduate school, he spent six years in
architectural practice, focusing on K-12, university
buildings, and industrial architecture.

Jessica Merino received the B.S.E.E. and M.S. de-
grees in electrical engineering from Clemson Univer-
sity, Clemson, SC, USA.

She is currently a systems engineer at Disney
Parks and Resorts in Orlando, FL, USA. Her research
interests include intelligent systems and continuum
robotic surfaces.

Anthony L. Threatt received the B.A. degree in ar-
chitecture and the Ph.D. degree in planning, design,
and the built environment (PDBE) from Clemson
University, Clemson, SC, USA, in 2004 and 2013,
respectively, and the M.Arch degree from Louisiana
State University, Baton Rouge, LA, USA, in 2008.

He is currently a Postdoctoral Research Fellow
in the Center for Research and Innovation in Sys-
tems Safety at Vanderbilt University Medical Center,
Nashville, TN, USA. He conducts research in human
factors focusing on usability, clinical decision mak-

ing, and human-centered design of health information technology.

Johnell O. Brooks received the B.A. degree in psy-
chology, the M.S. degree in human factors psychol-
ogy, and the Ph.D. degree in industrial-organizational
psychology from Clemson University, Clemson, SC,
USA, in 1998, 2002, and 2005, respectively.

She is currently an Assistant Professor in the De-
partment of Psychology, Clemson University. She
conducts research in human factors and studies aging
drivers within the driving and living environments.

Keith Evan Green (M’08) received the B.A. degree
in experimental Psychology from the University of
Pennsylvania, Philadelphia, PA, USA, the Master’s
degree in architecture from the University of Illinois
at Chicago, Chicago, IL, USA, and the Ph.D. degree
in architecture from the University of Pennsylvania.

He is currently a Professor with the Department of
Architecture and Electrical and Computer Engineer-
ing, and serves as the Director of the Clemson Uni-
versity Institute for Intelligent Materials, Systems and
Environments [iMSE] (www.CU-iMSE.org), a novel

research unit partnering Architecture, Materials Science and Engineering, and
Electrical and Computer Engineering. His research interests include develop-
ing, prototyping, and testing intelligent “architectural robotics.” He is also an
award-winning practicing Architect.

Ian D. Walker (F’06) received the B.Sc. degree in
mathematics from the University of Hull, Hull, U.K.,
and the M.S. and Ph.D. degrees in electrical engineer-
ing from the University of Texas at Austin, Austin,
TX, USA, in 1983, 1985, and 1989, respectively.

He is currently a Professor with the Department of
Electrical and Computer Engineering, Clemson Uni-
versity, Clemson, SC, USA. His research interests
are in robotics, particularly kinematically redundant
robots, robot reliability and fault detection, and bio-
logically inspired robots.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Algerian
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BaskOldFace
 /Batang
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FootlightMTLight
 /FreestyleScript-Regular
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /InformalRoman-Regular
 /Jokerman-Regular
 /JuiceITC-Regular
 /KristenITC-Regular
 /KuenstlerScript-Black
 /KuenstlerScript-Medium
 /KuenstlerScript-TwoBold
 /KunstlerScript
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSansUnicode
 /Magneto-Bold
 /MaturaMTScriptCapitals
 /MediciScriptLTStd
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MS-Mincho
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NuptialScript
 /OldEnglishTextMT
 /Onyx
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Parchment-Regular
 /Playbill
 /PMingLiU
 /PoorRichard-Regular
 /Ravie
 /ShowcardGothic-Reg
 /SimSun
 /SnapITC-Regular
 /Stencil
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanMTStd
 /TimesNewRomanMTStd-Bold
 /TimesNewRomanMTStd-BoldCond
 /TimesNewRomanMTStd-BoldIt
 /TimesNewRomanMTStd-Cond
 /TimesNewRomanMTStd-CondIt
 /TimesNewRomanMTStd-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryStd-Demi
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Suggested" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

